
Dynamic Graph Data
Structures on the GPU

Graph Problems

Graph Density
Dense Graphs Sparse Graphs

Static vs. Dynamic Graphs

Static Graphs

- Queries

Dynamic Graphs

- Queries
- Add Vertex
- Delete Vertex
- Insert Edge
- Remove Edge

Data Structures: Vertices and Edges
Vertices: Stored in an array, often just a pointer to edge lists

Edges: Many possible data structures

Dense Graphs
The edge list of dense graphs is often stored in an Adjacency Matrix

v0 v1 v2 v3 v4 v5

v0 1 1 1 1

v1 1 1 1 1 1

v2 1 1 1 1

v3 1 1 1

v4 1 1 1 1

v5 1 1 1 1

Pros:

- Efficient use of memory

Cons:

- Large memory requirement as
number of vertices grow

Sparse Graphs
This doesn't work well for sparse graphs since there are few edges per vertex

v0 v1 v2 v3 v4 v5

v0 1 1

v1 1 1

v2 1 1

v3 1 1

v4 1 1

v5 1 1

Large graphs tend to be sparse

Dataset Statistics
Some relevant data sets.

Data Sets Vertices Edges Max Degree Avg Degree

luxembourg_osm 114K 239K 6 2.1

germany_osm 11.5M 24.7M 13 2.1

road_usa 23.9M 57.71M 9 2.4

delaunay_n20 1M 6.3M 23 6.0

hollywood-2009 1.1M 112.8M 11,000 98.9

Static Implementation: Compressed Sparse Row
Static graphs can make extremely efficient use of memory

3

1
0

2 Edges 1 2 0 2 0 1 3 2

Vertices 0 2 4 7

Inserting a new edge or deleting a vertex would require a complete rebuild of
this structure.

Dynamic Graph Data Structures
Two alternate GPU dynamic graph data structures:

- Hornet
- faimGraph

Hornet
Hornet stores an edge list for each vertex
Each edge list is a variable sized array

3

1
0

2 Edges

Vertices * * * *

1 2 0 2 0 1 3 ? 2 ?

faimGraph
faimGraph stores edges in a linked list of fixed sized arrays

3

1
0

2 Edges

Vertices * * * *

0 1 *

3 ?

21 2 0 2

GPU Hash Tables
Edges are stored in a hash table
Each bucket is a linked list of arrays

Vertices

*

*

*

...

SlabHash Hash Table

0 1 3 ...

Buckets

*

*

3

1
0

2

Hash Table Buckets
Each bucket is a linked list of slabs
Each slab holds 30 edge indices along with some other control data

Hash Table

Buckets

0 1 2 ... 30 control
data

address
of next

slab

If edges have a weight, we would only store 15 values per slab

Why Hash Tables?
With a good hash distribution, they can be very fast

Operation
Complexity

Average Case Worst Case

Query O(1) O(n)

Insert O(1) O(n)

Delete O(1) O(n)

Implementation Details

Dynamic Graph Setup
Initial Allocations:

- Large block of memory for Vertices, each a hash table
- Large block of memory for Slabs
- Large block of memory for operation data (Edges to insert, delete, etc)

Initial Setup

- Each vertex is assigned a configurable number of empty buckets

2 Approaches for Inserting Edges

- Each thread inserts one edge

- Groups of 32 threads work cooperatively to do the work assigned to that
group of threads

Common "Insert Edge" Kernel Setup
Regardless of which approach is taken, the following setup is done on the CPU

- A list of edges to insert are copied to the GPU
- A CUDA Kernel is run with 1 thread per entry in the list

"Insert Edge": 1 per Thread
- Calculate the hash for the edge being inserted to pick a bucket

Hash = 16 % numBuckets;
16

4

* simplest possible hash
assuming 5 buckets per vertex

Step 1/6

"Insert Edge": 1 per Thread
- Calculate the hash for the edge being inserted to pick a bucket

- Look up bucket address based on the vertex number and the hash

16
4

31 1 -1 ... -1 * *

Hash = 16 % numBuckets;
BucketAddr = baseAddr + Hash;

V4 Bucket
* simplest possible hash
assuming 5 buckets per vertex

Step 2/6

"Insert Edge": 1 per Thread
- Calculate the hash for the edge being inserted to pick a bucket
- Look up bucket address based on the vertex number and the hash

- Loop through the slots in the bucket
- If edge was already found, exit loop
- If empty slot found:

- Use AtomicCAS to store the edge

16
4

31 1 -1 ... -1 * *

Hash = 16 % numBuckets;
BucketAddr = baseAddr + Hash;

V4 Bucket
* simplest possible hash
assuming 5 buckets per vertex

Step 3/6

"Insert Edge": 1 per Thread
- Calculate the hash for the edge being inserted to pick a bucket
- Look up bucket address based on the vertex number and the hash

- Loop through the slots in the bucket
- If edge was already found, exit loop
- If empty slot found:

- Use AtomicCAS to store the edge

16
4

31 1 -1 ... -1 * *

Hash = 16 % numBuckets;
BucketAddr = baseAddr + Hash;

V4 Bucket
* simplest possible hash
assuming 5 buckets per vertex

Step 4/6

"Insert Edge": 1 per Thread
- Calculate the hash for the edge being inserted to pick a bucket
- Look up bucket address based on the vertex number and the hash
- Loop through the slots in the bucket

- If edge was already found, exit loop

- If empty slot found:
- Use AtomicCAS to store the edge

16
4

31 1 -1 ... -1 * *

Hash = 16 % numBuckets;
BucketAddr = baseAddr + Hash;

V4 Bucket
* simplest possible hash
assuming 5 buckets per vertex

Step 5/6

"Insert Edge": 1 per Thread
- Calculate the hash for the edge being inserted to pick a bucket
- Look up bucket address based on the vertex number and the hash
- Loop through the slots in the bucket

- If edge was already found, exit loop
- If empty slot found:

- Use AtomicCAS to store the edge

16
4

31 1 16 ... -1 * *

Hash = 16 % numBuckets;
BucketAddr = baseAddr + Hash;

* simplest possible hash
assuming 5 buckets per vertex

V4 Bucket

Step 6/6

Atomics
Atomic Compare and Swap

oldValue atomicCAS(address, value, newValue);

This will do the following in one operation:

oldValue = *address;
if(*address == value)

*address = newValue;
return oldValue;

Concurrency Issues During Insert
2 Threads inserting in the same bucket at the same time will cause issues

Locking with AtomicCAS avoids those concurrency issues at the cost of
performance

In sparse graphs, collisions during insert isn't common enough to dramatically
impact performance

Warp Cooperative Work Sharing
This technique involves all threads of the Warp working together to insert
edges into the hash table

Terminology:

- A Warp is a group of 32 threads on the GPU
- Each thread has an ID from 0-31, known as a Lane ID
- All threads run the same code in sync

"Insert Edge": Warp Cooperative Work Sharing
- Use __ballot_sync to query which lanes of the warp have work

__ballot_sync will create a 32-bit int using a bool from each thread

TT

17

bool hasWork = ?
uint queue = __ballot_sync(hasWork)

16
4

Step 1/5

Example: 2 of these 32 threads have work

"Insert Edge": Warp Cooperative Work Sharing
- Use __ballot_sync to query which lanes of the warp have work

- Use __ffs to find the first lane with work

__ffs will find the index of the first bit set in the ballot
i.e. the next Lane ID with work to do

17

bool hasWork = ?
uint queue = __ballot_sync(hasWork)
int laneID = __ffs(queue)

16
4

Step 2/5

TT

"Insert Edge": Warp Cooperative Work Sharing
- Use __ballot_sync to query which lanes of the warp have work
- Use __ffs to find the first lane with work

- Use __shfl_sync to send edge info to all threads in the warp

bool hasWork = ?
uint queue = __ballot_sync(hasWork)
int laneID = __ffs(queue)
__shfl_sync(edgeInfo, laneID)

Now all threads in the warp know which edge they are
working together to insert

16
4

Step 3/5

"Insert Edge": Warp Cooperative Work Sharing
- Use __ballot_sync to query which lanes of the warp have work
- Use __ffs to find the first lane with work
- Use __shfl_sync to send edge info to all 32 threads in the warp

- All threads in the warp each check one of the slots of the slab for
duplicates and for an empty slot

bool isEmpty = ?
bool edgeExists = ?

16
4

31 1 -1 ... -1 * *V4 Bucket

Step 4/5

"Insert Edge": Warp Cooperative Work Sharing
- Use __ballot_sync to query which lanes of the warp have work
- Use __ffs to find the first lane with work
- Use __shfl_sync to send edge info to all 32 threads in the warp
- All threads in the warp each check one of the slots of the slab for duplicates and for an empty slot

- ballots are used to communicate the status and the edge is inserted
if needed

bool isEmpty = ?
bool edgeExists = ?
uint exists = __ballot_sync(edgeExists)
uint empty = __ballot_sync(isEmpty)

16
4

31 1 16 ... -1 * *V4 Bucket

Step 5/5

Additional Details In Brief
● Bidirectional edges

● Adding/Deleting Vertices

● Deleting Edges

● Phase-Concurrent Operations

Memory Usage
Each bucket in our hash table
holds a minimum of 30 edges
using 128 bytes

Graphs with a low average degree,
such as a road graphs, will make
very inefficient use of available
memory

Data Sets Max Degree Avg Degree

luxembourg_osm 6 2.1

germany_osm 13 2.1

road_usa 9 2.4

delaunay_n20 23 6.0

hollywood-2009 11,000 98.9

Results
Luxembourg data set 114599 vertices

* Results from an NVIDIA GTX 970

Technique Edges per Second (extrapolated)

119666 239332 (bidirectional)

1 per thread 14 million 24 Million

Warp Cooperative 9 million 14 Million

Follow up Questions

What is the difference between a static graph and a dynamic graph?

Follow up Questions

What is the biggest advantage of using a hash table over a single array of
edges per vertex?

Follow up Questions

What's a major disadvantage to using the SlabHash hash table for
dynamic graphs?

